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ABSTRACT 

OSynC is a set of standardised messages for 
communicating metrical information and rhythmic 
descriptors for use in networked computer-based music 
performance. It uses an Open Sound Control (OSC) 
encoding to send descriptors from a host machine to any 
number of receivers, while receivers can in turn send 
changes to the host. The OSC protocol is an emerging 
standard for musical control, and is an extensible, low-
bandwidth method for communicating information 
independent of platform and application. OSynC places 
particular emphasis on communicating rhythmic musical 
information at a range of musical timescales, providing 
details on musical context that are desirable for 
performance of beat-driven musics. It also aims to provide 
flexibility for musical improvisation, as well as 
intelligibility for performers. The authors describe 
OSynC’s implementation as a Max patch, VST plug-in, 
and Max For Live device. These implementations are 
available from http://x37v.com/x37v/osync/. 

1. INTRODUCTION 

Collaborative computer-based music performance 
encompasses a wide variety of musical styles and 
configurations. From the laptop orchestra to smaller 
ensembles, a common requirement is the synchronisation 
of participants for precisely timed output. This is 
particularly crucial in the performance of beat-driven 
musics, including contemporary electronic dance music, 
such as IDM, dubstep, and so on. A system for networked 
performance of beat-driven musics must necessarily be 
robust and low-latency. Additionally, the system should 
provide the ability for real-time flexibility and 
improvisation in performance. The issue of 
synchronisation in performance is thus not purely 
computational, but also needs to take into account musical 
aspects that are most useful to performers. 

Existing models for synchronisation may rely on 
non-computational means (i.e. initiating a simultaneous 
performance/clock start via visual or aural cues between 
performers), however different applications, computers, 
and hardware may suffer from varying latencies and jitter 

[1], causing eventual desynchronisation. Metronome-
based timing information may also be sent across a 
network from one user to another, in the form of pulses or 
'ticks', while timecode (or SMPTE) information can also 
be used as a means to indicate temporal position. The 
system proposed here (OSynC) aims to extend these 
existing paradigms. It describes a method for transmitting 
musical timing features that are important to performance, 
while maintaining flexibility and cross-application 
functionality. Given the continued growth of the laptop as 
performance instrument, networked synchronisation is not 
a new issue by any means, but remains an area for 
improvement. 

2. EXISTING MODELS 

To date, several methods have been used for synchronising 
two or more performers across a network. Early examples 
include MIDI clock and word clock, which are subject to 
comparatively significant limitations of bandwidth, 
distance, and frequency, and are prone to time drift. Other 
MIDI-based synchronisation methods include DIN sync, 
used for linking hardware synthesisers. MIDI, however, 
possesses a comparatively small bandwidth of 31.25 
kilobits/sec, compared with 10+ megabits/sec for 
networking technologies used by Open Sound Control 
(OSC) [2]. Meanwhile, the frame resolution of MIDI 
timecode implies suitability for video rather than music, 
making it unsuitable for control-rate musical interactions. 
A further drawback to each of these methods is their 
tailoring towards hardware (rather than software) 
synchronisation. 

Synchronisation using the computer’s audio 
capabilities has been proposed as a solution to the 
limitations of MIDI. Max's sync~ object, for instance, is 
designed to receive MIDI real-time pulses and fill in the 
'blanks' to create an audio-rate phasor wave synchronised 
to a pulse. Streaming audio-rate information across a 
network, however, raises its own problems with regard to 
different machines possessing different clocks and sample 
rates. Although a number of ways for transmitting audio 
over a network have been proposed (such as Olaf Matthes' 
largely abandoned netsend~ and netreceive~ objects for 
Max and Pd [3], and Plasq's Wormhole2 VST plug-in [4]), 



latency and synchronisation issues are not necessarily 
resolved with higher bandwidth. Furthermore, both of the 
above synchronisation systems lack the ability to transmit 
descriptive tags useful for musical performance. 

There are a number of industry-supported methods 
for inter-application (and inter-machine) synchronisation. 
Both ReWire and VST SystemLink transmit playback-
oriented information, including play state, bar, beat, and 
time signature information. ReWire, for instance, allows 
one application to drive another (client-server model), 
though this is not intended for use as a collaborative 
synchronisation tool for performers, as the assumption is 
that both programs are running locally. Meanwhile, 
Steinberg's VST SystemLink allows separate machines to 
be synchronised, but focuses primarily on sharing 
processor power between separate computers and 
additionally is developer-specific (i.e. both computers 
must be running Steinberg software). In 2008 Cycling '74 
implemented a transport object for Max, designed to 
generate ReWire-like timeline-based transport 
information, but this is similarly intended for local 
machine communication within Max. The ability for inter-
application communication is embedded in Max For Live, 
however communication is limited to Max and Ableton 
Live on a local machine. 

OSynC differs from the systems described above, 
in that it is designed as a cross-application, control-rate 
method for synchronising sound objects in networked 
performance, which is platform- and application-
independent. It focuses specifically on the synchronisation 
of musical attributes and their application in performance. 

3. OPEN SOUND CONTROL 

OSynC uses the Open Sound Control (OSC) protocol, an 
open system for network communication between 
computers and musical devices developed by the Center 
for New Music and Audio Technology (CNMAT), UC 
Berkeley [5]. The positives of an open communication 
protocol for musical control have been discussed in detail 
[6], in regard to applications such as communication of 
audio features [7], time-stamped clock synchronisation 
[8][11] and controlling VST plug-ins [9]. OSC’s openness 
makes it a valuable tool for cross-application 
communication; as Wright [6] states, “Part of what makes 
OSC ‘open’ is that it comes with no standard set of 
messages every synthesiser must implement, no 
preconceptions of what parameters should be available or 
how they should be organised […] This form of openness 
has led to great creativity among OSC implementations, 
supporting idiosyncratic, creative software and hardware” 
[6, p. 194]. The OSynC standard aims to leverage the 
openness of OSC while proposing a base set of descriptors 
useful to musical performance and synchronisation. 

OSynC proposes a set of standardised namespaces 
for synchronisation of rhythmic network-based 

performance. It also defines a priority of order for these 
messages. Similar OSC namespace standardisations have 
been proposed, such as SYN for synthesiser 
communication [10]. Wright [6] suggests that 
standardising namespaces is desirable for reasons of 
compatibility between applications and implementations. 

OSC sends a continuous stream of ‘packets’ (or 
datagrams) describing the instantaneous state of a musical 
interface [11]. OSynC implements this idea, and reports 
information on the instantaneous state of position within 
rhythmic phrase on several timescales, as opposed to a 
metronomic pulse. Because OSC sends low-bandwidth 
packages via UDP (without an acknowledgement package 
sent in return from the receiving computer/s), OSynC 
messages can saturate the available bandwidth1, or be sent 
at a user-specified rate. As OSynC sends a complete set of 
messages in each packet, dropped packets are not 
problematic, because the ensuing packets will contain the 
most up-to-date state information. 

While research has been carried out on precise 
synchronisation using timestamps to allow systems to 
adjust for latency [8], OSynC does not timestamp 
messages for the sake of latency adjustment, although this 
could be provided in future implementations.  It does 
however timestamp messages to ensure that message order 
is maintained. Clock synchronisation is not a concern in 
this research, as accuracy beyond the perception of the 
performer is not required2. Sample accuracy is therefore 
not necessary in OSynC, but a simple latency 
compensation can be implemented by timing a round-trip 
of packets and adjusting for latency on the host machine. 

4. OSYNC 

4.1. Description of OSynC 

While OSC is typically used to send instrument and 
gestural control parameters and hardware control 
messages, OSC's openness as indicated by Wright [5] 
means that any musical information from the host can be 
treated as a transferable piece of information via OSC. 
Here, OSynC is used to transmit transport information 
between performers using a one-to-many host-receiver 
system. OSynC information is sent to receivers’ IP 
addresses by the host via UDP. The host is responsible for 
transmitting OSynC messages, however any receiver of 
the system can alter the output of the host machine if 
desired (e.g. increasing master tempo). Although OSynC 
shares a number of similarities with ReWire’s transport 

 
1 Tests show that between 13,500 and 17,000 datagrams per second 

could be sent between applications on a local machine, or between 
3600 and 20,000 per second between performers over computer-
to-computer network, depending on Max’s Overdrive setting 
(benchmark tests carried out by authors). Speeds above this are 
possible, but may result in dropped packets. 

2 Wright [6, p. 195] addresses network latency, concluding that 
latency of up to 10ms is acceptable in a musical performance. 



information, it possesses the advantage that the application 
does not need to support ReWire, only OSC. Furthermore, 
OSynC’s descriptors are extendable to provide more 
detailed rhythmic information useful to performance. 

4.2. OSynC information 

OSynC transmits packets which define the 
following aspects of rhythmic state, in order: 
 
0. Timestamp (for message order): integer 

A low-resolution timestamp is included, not for latency 
adjustment or synchronisation, but to ensure that 
messages are received in the correct order. This 
safeguards against messages being re-ordered due to 
network load. If a message’s time-stamp is earlier than 
the current message’s time-stamp, it can be 
disregarded. 

 
1. Play state (on/off): integer 

Indicates whether the OSynC host transport is 
currently playing. 

 
2. BPM/tempo: float 

Indicates beats per minute as specified by the host. 
 
3. Time signature: integer array 

Numerator/denominator pair signifying number and 
type of beats. 

 
4. Time elapsed between fractions (outlined below) as 
millisecond value: float 

Used for synchronising time-based effects between 
users (such as delay times), or generating events above 
fraction-level resolution (e.g. at 120 BPM [4/4 time 
signature] the milliseconds between 32nd-note fractions 
is 62.5). 

 
5. Total bar count from initialisation: integer 

Indicates time (in bars) elapsed from the start of 
performance; can be used to schedule future events 
between performers. 

 
6. Phrase-level bar count (1–4, or configurable by the 
user): integer 

Allows performers to work within shared phrasings 
comprising multiple bars. 

 
7. Beat within the bar (1–4 per bar, or configurable by the 
user based on time signature): integer 

Allows performers to remain synchronised within the 
bar. 

 
8. Fraction within bar (0–31 per bar, or configurable by 
the user based on time signature): integer 

Indicates basic temporal framework for note event 
occurrence, with the assumption of 4/4 timing. 
Calculated based on time signature (32 × numerator ÷ 
denominator, e.g. 4/4 equates to 32 demisemiquaver 
events per bar; 3/4 equates to 24 per bar; 7/8 equates to 
28 per bar). This representation has been used by the 
authors as a simple method of driving a step sequencer. 

 
9. Ramp (0.–1. across the course of a bar): float 

Indicates partial position within a bar, useful for 
creating arbitrary timing alterations on the receiver 
side. 

 
A typical OSynC message packet will appear as follows: 

 
/timestamp -773495082 
/play 1 
/bpm 125.7 
/timesig 4 4 
/fractime 59.665871 
/barcount 12 
/bar 4 
/beat 3 
/fraction 18 
/ramp 0.578125 

 
Figure 1. Received OSynC messages within Max 

 
Early implementations of OSynC transmitted ‘incomplete’ 
packets (without timestamps) that only described changed 
attributes, hence only ramp messages were sent between 
fraction messages. It was therefore important that 
messages from the host machine were sent in the above 
order and that packets were not dropped. The current 
model for OSynC suggests that ‘complete’ messages 
should be sent to circumvent any ambiguity created by lost 
packets. Because of this single packet design, message 
order is less of an issue, but it is still recommended that 
the host packs the message in this top-down order to 
ensure that higher-level musical context-related 
information (e.g. bar) arrives before note-level instruction 
(e.g. fraction). Lastly, it should be emphasised that OSynC 
is particularly dedicated to performance use; its current 



implementation forgoes sample accuracy in favour of 
flexibility and ease of use in a performance situation. 
Nonetheless, it is capable of synchronisation with no 
audible latency between performers. 

 
4.3. Benefits of OSynC 

OSynC therefore does not rely on the strict regularity of 
pulse, but rather the regular update of information. Jitter in 
regularity, or dropped packets, are not a major concern, 
given the high rate of messages sent. OSynC differs from 
existing synchronisation protocols such as MIDI real-time 
messages in that if a connection is lost, positional 
synchronisation with the host is re-established as soon as 
the next package is received, instead of continuing from 
the last dropped packet. 

OSynC focuses on sharing useful musical 
information between performers on a variety of 
timescales, from the macro-level (play and barcount), to 
meso-level (bar), sound object level (beat and fraction), 
down to micro-level (ramp) (after Roads [12]). This 
allows performers to work with different levels of 
rhythmic and structural form, in a way that is intelligible 
to all participants. OSynC additionally allows bidirectional 
communication between host and receiver; although all 
OSynC messages originate from the host, the receiver can 
alter higher-level controls such as tempo, time signature, 
and play state, forming a discontinuous feedback loop 
(Figure 2). 

 

 
Figure 2. Host/receiver network flow using OSynC 
 

A receiver can use OSynC in a prescriptive sense, 
or re-interpret transmitted values to their own ends (e.g. 
adding ramp value to barcount in order to provide 
continuous representation of position3). The ramp value, in 

 
3 This could be useful in controlling elements that should evolve 

over the course of a musical performance, and could foreseeably 

particular, is a powerful musical descriptor. A receiver can 
use the ramp value as an arbitrary method of counting a 
number of beats within a bar by multiplying it by an 
integer or float, to create polyrhythmic interplay against 
the host to any degree of complexity. Additionally, 
fractime could be multiplied or divided to convey tempo-
synchronous timing events beyond the fraction level. 

Another benefit of OSynC is that host and receiver 
machines can run at different sampling rates and require 
no specialised hardware, whereas synchronisation systems 
such as VST SystemLink require sample rates to be the 
same in both systems. Additionally, OSynC is not 
software- or hardware-dependent, and can be implemented 
as a standalone within a development environment (Max, 
Pd, SuperCollider), or as a plug-in if non-development 
software is used as the host (e.g. multi-track audio 
software). 

4.4. Current implementation 

The first version of OSynC was built in 2007–2008 [13]. 
Its initial goal was to improve communication between the 
multi-track recording environment Cubase and MaxMSP, 
using Cubase to both maintain tempo and capture events 
generated in Max, while maintaining a uniform position 
between both programs to make subsequent editing easier. 
To do this, an OSynC host VST plug-in was built using 
the Pluggo SDK, which leveraged plugsync~’s ability to 
obtain ReWire-like transport information from a host 
environment. Here, Cubase generated timing events that 
were interpreted by MaxMSP, allowing synchronisation 
between the two applications on the local machine. One of 
the drawbacks of this implementation was that OSynC 
transmitted the host’s state once per signal vector. The 
vector size used by plug-ins was the same as the I/O size, 
meaning that a VS of 512 samples produced up to 11ms 
waver, a limitation of this particular host environment. 
There was therefore a tradeoff between temporal accuracy 
and efficiency. This initial implementation also used a 
simplified descriptor system, which only updated changed 
values (i.e. bar was only reported at the start of a new bar).  
This contradicted OSC’s remit as a stateless message 
system. 

Since the introduction of Max For Live (2010), an 
implementation of OSynC within this multi-track 
recording environment is a simple task4. Similarly, the 
introduction of the transport object for Max enables Max 
to act as a host system by wrapping OSC descriptors 
around the transport object’s output. Although these 
programs enable synchronisation, they do not in 

 
be used to control non-musical aspects of a performance, such as 
lighting. 

4 The re-integration of many Pluggo objects into the Max For Live 
package means that a network synchronisation system like OSynC 
can be built in Ableton Live, using Live as the host and plugsync~ 
to report on host state. 
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themselves suggest a solution to cross-application (beyond 
Max and Live) or networked synchronisation. A wider 
implementation of OSynC as a VST plug-in, for example, 
would allow any VST-compatible host to act as an OSynC 
host, and any implementation of OSynC within an audio 
development environment like SuperCollider, Max, or Pd 
to act as a host, or as a receiver. The current 
implementation of OSynC as used by the authors is as a 
means of synchronising two performers using Max as a 
generative performance environment, however there are 
myriad potential uses for the OSynC system. 
Implementations of OSynC for Max, Ableton Live, and 
Pluggo are available from http://x37v.com/x37v/osync/. 

4.4.1. Example 1: Networked cross-application 
performance using a variable number of participants 

A host running Ableton Live transmits OSynC 
information, via Max For Live, to two receivers across a 
network. One receiver is using Max, and another is using 
Pd. The Ableton Live host is triggering scenes at a variety 
of BPM and continually addressing both receivers using 
OSynC. As the scene is changed, each receiver is updated 
with current information in order to generate note events 
in time with the host. The receivers’ time-synchronous 
effects (e.g. delay) are updated via fractime. Both 
receivers can additionally slow down or speed up the BPM 
of the Max For Live host. A third receiver, running 
Processing, creates time-synchronous visuals alongside the 
performers. 

4.4.2. Example 2: Working with flexible timings in OSynC 

A host, using an implementation of OSynC in 
SuperCollider, transmits timing information to a receiver 
running Max. Using transitions in the ramp value to 
generate note events, the Max receiver can work at a 
different time signature to the host in order to produce 
polyrhythmic output, while still staying synchronised with 
the host at the bar- and phrase- level. 
 

 
Figure 3. Altering linearity of playback using ramp 

value in conjunction with a lookup function 

Secondly, the Max receiver can use a lookup function to 
create temporal variation [14] from the events output by 
the host at the bar- or beat- level, such as dynamic 
temporal phrasing and swing (Figure 3). Additionally, the 
Max receiver uses a combination of bar and ramp values 
to drive a dynamic filter effect over the course of a four-
bar phrase. 

4.5. Future implementations 

The current implementation is limited to receivers 
known to the host, i.e. the host explicitly sends OSynC 
messages to fixed IP addresses. An area to investigate in 
future is the ability for a new receiver to join a multicasted 
performance by requesting OSynC packets from a host, 
without prior explication of the receiver’s address. Further 
research into the scalability of performer numbers and 
network load would also be required. Additional musical 
metadata such as rhythmic phrasing, root note, and 
musical mode could also be implemented to allow 
performers to synchronise modal changes during a 
performance. Extended benchmarking of OSynC to 
increase efficiency is also a possibility. A more formalised 
rule for timestamping based on OSC timetags, to provide 
high-resolution timestamping of OSynC packets, is also an 
area for future inquiry. 

5. CONCLUSION 

Although OSynC has been used as a performance 
synchronisation system by the authors for a number of 
years, this paper proposes OSynC as a method for 
standardising beat-driven performance, rather than as a 
definitive implementation of this idea. Attention has been 
paid to prioritising useful performance information, while 
maintaining intelligibility and controllability. One of the 
benefits of OSynC as proposed here is that descriptors can 
be used, ignored, or extended, according to performer 
needs. All musical factors needed by the authors are 
described here, however musicians may also wish to 
communicate additional information such as pitch spaces, 
timbral settings, dynamics, rhythmic groupings, light 
controls, text, and other information not specifically 
related to synchronization. With this alpha implementation 
these additional ways of participant synchronisation have 
been considered but have been left up to the end user. The 
authors welcome other implementations for other 
software. 

The standardisation of an open synchronisation 
protocol encourages compatibility between applications 
and third-party plug-ins, as well as performers. Initial 
results from the use of OSC as a means for 
synchronisation show promise for wider application. 
Because OSC is an open protocol requiring no special 
hardware, and the number of programs supporting this 



standard continues to increase, OSC (and OSynC) may be 
fertile ground for future development. 
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