
OSYNC: CROSS-APPLICATION PERFORMANCE
SYNCHRONISATION OF BEAT-DRIVEN MUSICS

Alex Mesker

Macquarie University
Department of Media, Music,

Communication & Cultural Studies

Sarah Keith

Macquarie University
Department of Media, Music,

Communication & Cultural Studies

ABSTRACT

OSynC is a set of standardised messages for
communicating metrical information and rhythmic
descriptors for use in networked computer-based music
performance. It uses an Open Sound Control (OSC)
encoding to send descriptors from a host machine to any
number of receivers, while receivers can in turn send
changes to the host. The OSC protocol is an emerging
standard for musical control, and is an extensible, low-
bandwidth method for communicating information
independent of platform and application. OSynC places
particular emphasis on communicating rhythmic musical
information at a range of musical timescales, providing
details on musical context that are desirable for
performance of beat-driven musics. It also aims to provide
flexibility for musical improvisation, as well as
intelligibility for performers. The authors describe
OSynC’s implementation as a Max patch, VST plug-in,
and Max For Live device. These implementations are
available from http://x37v.com/x37v/osync/.

1. INTRODUCTION

Collaborative computer-based music performance
encompasses a wide variety of musical styles and
configurations. From the laptop orchestra to smaller
ensembles, a common requirement is the synchronisation
of participants for precisely timed output. This is
particularly crucial in the performance of beat-driven
musics, including contemporary electronic dance music,
such as IDM, dubstep, and so on. A system for networked
performance of beat-driven musics must necessarily be
robust and low-latency. Additionally, the system should
provide the ability for real-time flexibility and
improvisation in performance. The issue of
synchronisation in performance is thus not purely
computational, but also needs to take into account musical
aspects that are most useful to performers.

Existing models for synchronisation may rely on
non-computational means (i.e. initiating a simultaneous
performance/clock start via visual or aural cues between
performers), however different applications, computers,
and hardware may suffer from varying latencies and jitter

[1], causing eventual desynchronisation. Metronome-
based timing information may also be sent across a
network from one user to another, in the form of pulses or
'ticks', while timecode (or SMPTE) information can also
be used as a means to indicate temporal position. The
system proposed here (OSynC) aims to extend these
existing paradigms. It describes a method for transmitting
musical timing features that are important to performance,
while maintaining flexibility and cross-application
functionality. Given the continued growth of the laptop as
performance instrument, networked synchronisation is not
a new issue by any means, but remains an area for
improvement.

2. EXISTING MODELS

To date, several methods have been used for synchronising
two or more performers across a network. Early examples
include MIDI clock and word clock, which are subject to
comparatively significant limitations of bandwidth,
distance, and frequency, and are prone to time drift. Other
MIDI-based synchronisation methods include DIN sync,
used for linking hardware synthesisers. MIDI, however,
possesses a comparatively small bandwidth of 31.25
kilobits/sec, compared with 10+ megabits/sec for
networking technologies used by Open Sound Control
(OSC) [2]. Meanwhile, the frame resolution of MIDI
timecode implies suitability for video rather than music,
making it unsuitable for control-rate musical interactions.
A further drawback to each of these methods is their
tailoring towards hardware (rather than software)
synchronisation.

Synchronisation using the computer’s audio
capabilities has been proposed as a solution to the
limitations of MIDI. Max's sync~ object, for instance, is
designed to receive MIDI real-time pulses and fill in the
'blanks' to create an audio-rate phasor wave synchronised
to a pulse. Streaming audio-rate information across a
network, however, raises its own problems with regard to
different machines possessing different clocks and sample
rates. Although a number of ways for transmitting audio
over a network have been proposed (such as Olaf Matthes'
largely abandoned netsend~ and netreceive~ objects for
Max and Pd [3], and Plasq's Wormhole2 VST plug-in [4]),

latency and synchronisation issues are not necessarily
resolved with higher bandwidth. Furthermore, both of the
above synchronisation systems lack the ability to transmit
descriptive tags useful for musical performance.

There are a number of industry-supported methods
for inter-application (and inter-machine) synchronisation.
Both ReWire and VST SystemLink transmit playback-
oriented information, including play state, bar, beat, and
time signature information. ReWire, for instance, allows
one application to drive another (client-server model),
though this is not intended for use as a collaborative
synchronisation tool for performers, as the assumption is
that both programs are running locally. Meanwhile,
Steinberg's VST SystemLink allows separate machines to
be synchronised, but focuses primarily on sharing
processor power between separate computers and
additionally is developer-specific (i.e. both computers
must be running Steinberg software). In 2008 Cycling '74
implemented a transport object for Max, designed to
generate ReWire-like timeline-based transport
information, but this is similarly intended for local
machine communication within Max. The ability for inter-
application communication is embedded in Max For Live,
however communication is limited to Max and Ableton
Live on a local machine.

OSynC differs from the systems described above,
in that it is designed as a cross-application, control-rate
method for synchronising sound objects in networked
performance, which is platform- and application-
independent. It focuses specifically on the synchronisation
of musical attributes and their application in performance.

3. OPEN SOUND CONTROL

OSynC uses the Open Sound Control (OSC) protocol, an
open system for network communication between
computers and musical devices developed by the Center
for New Music and Audio Technology (CNMAT), UC
Berkeley [5]. The positives of an open communication
protocol for musical control have been discussed in detail
[6], in regard to applications such as communication of
audio features [7], time-stamped clock synchronisation
[8][11] and controlling VST plug-ins [9]. OSC’s openness
makes it a valuable tool for cross-application
communication; as Wright [6] states, “Part of what makes
OSC ‘open’ is that it comes with no standard set of
messages every synthesiser must implement, no
preconceptions of what parameters should be available or
how they should be organised […] This form of openness
has led to great creativity among OSC implementations,
supporting idiosyncratic, creative software and hardware”
[6, p. 194]. The OSynC standard aims to leverage the
openness of OSC while proposing a base set of descriptors
useful to musical performance and synchronisation.

OSynC proposes a set of standardised namespaces
for synchronisation of rhythmic network-based

performance. It also defines a priority of order for these
messages. Similar OSC namespace standardisations have
been proposed, such as SYN for synthesiser
communication [10]. Wright [6] suggests that
standardising namespaces is desirable for reasons of
compatibility between applications and implementations.

OSC sends a continuous stream of ‘packets’ (or
datagrams) describing the instantaneous state of a musical
interface [11]. OSynC implements this idea, and reports
information on the instantaneous state of position within
rhythmic phrase on several timescales, as opposed to a
metronomic pulse. Because OSC sends low-bandwidth
packages via UDP (without an acknowledgement package
sent in return from the receiving computer/s), OSynC
messages can saturate the available bandwidth1, or be sent
at a user-specified rate. As OSynC sends a complete set of
messages in each packet, dropped packets are not
problematic, because the ensuing packets will contain the
most up-to-date state information.

While research has been carried out on precise
synchronisation using timestamps to allow systems to
adjust for latency [8], OSynC does not timestamp
messages for the sake of latency adjustment, although this
could be provided in future implementations. It does
however timestamp messages to ensure that message order
is maintained. Clock synchronisation is not a concern in
this research, as accuracy beyond the perception of the
performer is not required2. Sample accuracy is therefore
not necessary in OSynC, but a simple latency
compensation can be implemented by timing a round-trip
of packets and adjusting for latency on the host machine.

4. OSYNC

4.1. Description of OSynC

While OSC is typically used to send instrument and
gestural control parameters and hardware control
messages, OSC's openness as indicated by Wright [5]
means that any musical information from the host can be
treated as a transferable piece of information via OSC.
Here, OSynC is used to transmit transport information
between performers using a one-to-many host-receiver
system. OSynC information is sent to receivers’ IP
addresses by the host via UDP. The host is responsible for
transmitting OSynC messages, however any receiver of
the system can alter the output of the host machine if
desired (e.g. increasing master tempo). Although OSynC
shares a number of similarities with ReWire’s transport

1 Tests show that between 13,500 and 17,000 datagrams per second

could be sent between applications on a local machine, or between
3600 and 20,000 per second between performers over computer-
to-computer network, depending on Max’s Overdrive setting
(benchmark tests carried out by authors). Speeds above this are
possible, but may result in dropped packets.

2 Wright [6, p. 195] addresses network latency, concluding that
latency of up to 10ms is acceptable in a musical performance.

information, it possesses the advantage that the application
does not need to support ReWire, only OSC. Furthermore,
OSynC’s descriptors are extendable to provide more
detailed rhythmic information useful to performance.

4.2. OSynC information

OSynC transmits packets which define the
following aspects of rhythmic state, in order:

0. Timestamp (for message order): integer

A low-resolution timestamp is included, not for latency
adjustment or synchronisation, but to ensure that
messages are received in the correct order. This
safeguards against messages being re-ordered due to
network load. If a message’s time-stamp is earlier than
the current message’s time-stamp, it can be
disregarded.

1. Play state (on/off): integer

Indicates whether the OSynC host transport is
currently playing.

2. BPM/tempo: float

Indicates beats per minute as specified by the host.

3. Time signature: integer array

Numerator/denominator pair signifying number and
type of beats.

4. Time elapsed between fractions (outlined below) as
millisecond value: float

Used for synchronising time-based effects between
users (such as delay times), or generating events above
fraction-level resolution (e.g. at 120 BPM [4/4 time
signature] the milliseconds between 32nd-note fractions
is 62.5).

5. Total bar count from initialisation: integer

Indicates time (in bars) elapsed from the start of
performance; can be used to schedule future events
between performers.

6. Phrase-level bar count (1–4, or configurable by the
user): integer

Allows performers to work within shared phrasings
comprising multiple bars.

7. Beat within the bar (1–4 per bar, or configurable by the
user based on time signature): integer

Allows performers to remain synchronised within the
bar.

8. Fraction within bar (0–31 per bar, or configurable by
the user based on time signature): integer

Indicates basic temporal framework for note event
occurrence, with the assumption of 4/4 timing.
Calculated based on time signature (32 × numerator ÷
denominator, e.g. 4/4 equates to 32 demisemiquaver
events per bar; 3/4 equates to 24 per bar; 7/8 equates to
28 per bar). This representation has been used by the
authors as a simple method of driving a step sequencer.

9. Ramp (0.–1. across the course of a bar): float

Indicates partial position within a bar, useful for
creating arbitrary timing alterations on the receiver
side.

A typical OSynC message packet will appear as follows:

/timestamp -773495082
/play 1
/bpm 125.7
/timesig 4 4
/fractime 59.665871
/barcount 12
/bar 4
/beat 3
/fraction 18
/ramp 0.578125

Figure 1. Received OSynC messages within Max

Early implementations of OSynC transmitted ‘incomplete’
packets (without timestamps) that only described changed
attributes, hence only ramp messages were sent between
fraction messages. It was therefore important that
messages from the host machine were sent in the above
order and that packets were not dropped. The current
model for OSynC suggests that ‘complete’ messages
should be sent to circumvent any ambiguity created by lost
packets. Because of this single packet design, message
order is less of an issue, but it is still recommended that
the host packs the message in this top-down order to
ensure that higher-level musical context-related
information (e.g. bar) arrives before note-level instruction
(e.g. fraction). Lastly, it should be emphasised that OSynC
is particularly dedicated to performance use; its current

implementation forgoes sample accuracy in favour of
flexibility and ease of use in a performance situation.
Nonetheless, it is capable of synchronisation with no
audible latency between performers.

4.3. Benefits of OSynC

OSynC therefore does not rely on the strict regularity of
pulse, but rather the regular update of information. Jitter in
regularity, or dropped packets, are not a major concern,
given the high rate of messages sent. OSynC differs from
existing synchronisation protocols such as MIDI real-time
messages in that if a connection is lost, positional
synchronisation with the host is re-established as soon as
the next package is received, instead of continuing from
the last dropped packet.

OSynC focuses on sharing useful musical
information between performers on a variety of
timescales, from the macro-level (play and barcount), to
meso-level (bar), sound object level (beat and fraction),
down to micro-level (ramp) (after Roads [12]). This
allows performers to work with different levels of
rhythmic and structural form, in a way that is intelligible
to all participants. OSynC additionally allows bidirectional
communication between host and receiver; although all
OSynC messages originate from the host, the receiver can
alter higher-level controls such as tempo, time signature,
and play state, forming a discontinuous feedback loop
(Figure 2).

Figure 2. Host/receiver network flow using OSynC

A receiver can use OSynC in a prescriptive sense,
or re-interpret transmitted values to their own ends (e.g.
adding ramp value to barcount in order to provide
continuous representation of position3). The ramp value, in

3 This could be useful in controlling elements that should evolve

over the course of a musical performance, and could foreseeably

particular, is a powerful musical descriptor. A receiver can
use the ramp value as an arbitrary method of counting a
number of beats within a bar by multiplying it by an
integer or float, to create polyrhythmic interplay against
the host to any degree of complexity. Additionally,
fractime could be multiplied or divided to convey tempo-
synchronous timing events beyond the fraction level.

Another benefit of OSynC is that host and receiver
machines can run at different sampling rates and require
no specialised hardware, whereas synchronisation systems
such as VST SystemLink require sample rates to be the
same in both systems. Additionally, OSynC is not
software- or hardware-dependent, and can be implemented
as a standalone within a development environment (Max,
Pd, SuperCollider), or as a plug-in if non-development
software is used as the host (e.g. multi-track audio
software).

4.4. Current implementation

The first version of OSynC was built in 2007–2008 [13].
Its initial goal was to improve communication between the
multi-track recording environment Cubase and MaxMSP,
using Cubase to both maintain tempo and capture events
generated in Max, while maintaining a uniform position
between both programs to make subsequent editing easier.
To do this, an OSynC host VST plug-in was built using
the Pluggo SDK, which leveraged plugsync~’s ability to
obtain ReWire-like transport information from a host
environment. Here, Cubase generated timing events that
were interpreted by MaxMSP, allowing synchronisation
between the two applications on the local machine. One of
the drawbacks of this implementation was that OSynC
transmitted the host’s state once per signal vector. The
vector size used by plug-ins was the same as the I/O size,
meaning that a VS of 512 samples produced up to 11ms
waver, a limitation of this particular host environment.
There was therefore a tradeoff between temporal accuracy
and efficiency. This initial implementation also used a
simplified descriptor system, which only updated changed
values (i.e. bar was only reported at the start of a new bar).
This contradicted OSC’s remit as a stateless message
system.

Since the introduction of Max For Live (2010), an
implementation of OSynC within this multi-track
recording environment is a simple task4. Similarly, the
introduction of the transport object for Max enables Max
to act as a host system by wrapping OSC descriptors
around the transport object’s output. Although these
programs enable synchronisation, they do not in

be used to control non-musical aspects of a performance, such as
lighting.

4 The re-integration of many Pluggo objects into the Max For Live
package means that a network synchronisation system like OSynC
can be built in Ableton Live, using Live as the host and plugsync~
to report on host state.

!"#$

%&'&()&*+, %&'&()&*+-

!"#$+#$.$&+/'"0$(01"1#23+$*.0#4($$&56

%&'&()&*7(0($(.$&5+'8.09&#
/#&2&'$()&23+$*.0#4($$&56

themselves suggest a solution to cross-application (beyond
Max and Live) or networked synchronisation. A wider
implementation of OSynC as a VST plug-in, for example,
would allow any VST-compatible host to act as an OSynC
host, and any implementation of OSynC within an audio
development environment like SuperCollider, Max, or Pd
to act as a host, or as a receiver. The current
implementation of OSynC as used by the authors is as a
means of synchronising two performers using Max as a
generative performance environment, however there are
myriad potential uses for the OSynC system.
Implementations of OSynC for Max, Ableton Live, and
Pluggo are available from http://x37v.com/x37v/osync/.

4.4.1. Example 1: Networked cross-application
performance using a variable number of participants

A host running Ableton Live transmits OSynC
information, via Max For Live, to two receivers across a
network. One receiver is using Max, and another is using
Pd. The Ableton Live host is triggering scenes at a variety
of BPM and continually addressing both receivers using
OSynC. As the scene is changed, each receiver is updated
with current information in order to generate note events
in time with the host. The receivers’ time-synchronous
effects (e.g. delay) are updated via fractime. Both
receivers can additionally slow down or speed up the BPM
of the Max For Live host. A third receiver, running
Processing, creates time-synchronous visuals alongside the
performers.

4.4.2. Example 2: Working with flexible timings in OSynC

A host, using an implementation of OSynC in
SuperCollider, transmits timing information to a receiver
running Max. Using transitions in the ramp value to
generate note events, the Max receiver can work at a
different time signature to the host in order to produce
polyrhythmic output, while still staying synchronised with
the host at the bar- and phrase- level.

Figure 3. Altering linearity of playback using ramp

value in conjunction with a lookup function

Secondly, the Max receiver can use a lookup function to
create temporal variation [14] from the events output by
the host at the bar- or beat- level, such as dynamic
temporal phrasing and swing (Figure 3). Additionally, the
Max receiver uses a combination of bar and ramp values
to drive a dynamic filter effect over the course of a four-
bar phrase.

4.5. Future implementations

The current implementation is limited to receivers
known to the host, i.e. the host explicitly sends OSynC
messages to fixed IP addresses. An area to investigate in
future is the ability for a new receiver to join a multicasted
performance by requesting OSynC packets from a host,
without prior explication of the receiver’s address. Further
research into the scalability of performer numbers and
network load would also be required. Additional musical
metadata such as rhythmic phrasing, root note, and
musical mode could also be implemented to allow
performers to synchronise modal changes during a
performance. Extended benchmarking of OSynC to
increase efficiency is also a possibility. A more formalised
rule for timestamping based on OSC timetags, to provide
high-resolution timestamping of OSynC packets, is also an
area for future inquiry.

5. CONCLUSION

Although OSynC has been used as a performance
synchronisation system by the authors for a number of
years, this paper proposes OSynC as a method for
standardising beat-driven performance, rather than as a
definitive implementation of this idea. Attention has been
paid to prioritising useful performance information, while
maintaining intelligibility and controllability. One of the
benefits of OSynC as proposed here is that descriptors can
be used, ignored, or extended, according to performer
needs. All musical factors needed by the authors are
described here, however musicians may also wish to
communicate additional information such as pitch spaces,
timbral settings, dynamics, rhythmic groupings, light
controls, text, and other information not specifically
related to synchronization. With this alpha implementation
these additional ways of participant synchronisation have
been considered but have been left up to the end user. The
authors welcome other implementations for other
software.

The standardisation of an open synchronisation
protocol encourages compatibility between applications
and third-party plug-ins, as well as performers. Initial
results from the use of OSC as a means for
synchronisation show promise for wider application.
Because OSC is an open protocol requiring no special
hardware, and the number of programs supporting this

standard continues to increase, OSC (and OSynC) may be
fertile ground for future development.

6. REFERENCES

[1] Innerclock Systems Pty Ltd 2012, ‘Precision Midi
Clock Din Sync and Tempo Synchronisation
Solutions’, online at: http://innerclocksystems.com/
New%20ICS%20Clock%20Watch.html, viewed 24
February 2012

[2] Simpson, S, no date, ‘Open Sound Control: an
overview’, online at: http://www.ixi-audio.net/
content/info/osc.html, viewed 24 February 2012

[3] Matthes, O 2005, ‘netsend~ for Max/MSP and Pure
Data’, online at: http://www.nullmedium.de/
dev/netsend%7E/, viewed 24 February 2012

[4] Plasq 2007, ‘Wormhole2—Audio plugin to transfer
realtime audio over a network’, online at:
http://code.google.com/p/wormhole2/, viewed 24
February 2012

[5] Center For New Music and Audio Technology
(CNMAT), no date, ‘OpenSoundControl.org
Introduction to OSC’, online at: http://
opensoundcontrol.org/introduction-osc

[6] Wright, M 2005, ‘Open Sound Control: an enabling
technology for musical networking’, Organised
Sound 10(3), pp. 193–200

[7] Schmeder, A, Freed, A & Wessel, D 2010, ‘Best
Practices for Open Sound Control’, Proceedings of
Linux Audio Conference, Utrecht, Netherlands,
online at: http://opensoundcontrol.org/files/osc-best-
practices-final.pdf, viewed 24 February 2012

[8] Dannenberg, R 2004, ‘Clock Synchronization for
Interactive Music Systems’, Proceedings of OSC
Conference 2004, Berkeley, USA

[9] Zbyszynski, M & Freed, A 2004, ‘OSC Control of
VST Plug-ins’, Proceedings of OSC Conference
2004, Berkeley, USA

[10] Ehrentraud, F 2007, ‘SynOSCopy’, online at:
https://github.com/fabb/SynOSCopy/wiki, viewed 24
February 2012

[11] Schmeder, A 2008, ‘Everything you ever wanted to
know about Open Sound Control’, online at:
http://opensoundcontrol.org/publication/everything-
you-ever-wanted-know-about-open-sound-control,
viewed 24 February 2012

[12] Roads, C 2001, Microsound, MIT Press, USA
[13] Mesker, A 2008, ‘OSynC – Synchronising

applications with a VST Plugin’, online at:
http://x37v.com/x37v/writing/osync-synchronising-
applications-with-a-vst-plugin/, viewed 24 February
2012

[14] Schacher, JC & Neukom, M 2007, ‘Where’s the
beat? Tools for dynamic tempo calculations’,
Proceedings of the 2007 International Computer
Music Conference, Copenhagen, pp. 17–20

